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A graph-theoretical analysis of certain n-electron properties of alternant 
molecules with one heteroatom is given. Topological formulas for total 
n-electron energy, n-electron charge density, bond order and various polari- 
zabilities are derived. The main results of the paper are summarized in Rules 
1-7. 
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1. Introduction 

In recent years graph-theoretical methods were frequently applied in theoretical 
investigations of conjugated molecules [1]. The success of this "topological" 
approach to conjugated compounds is based mainly on a close relation between 
the Hamiltonian matrix in the Hiickel molecular orbital (HMO) theory and the 
adjacency matrix of the so called "molecular graph" [2]. Many of the previous 
investigations in this field deal with conjugated hydrocarbons, and the topological 
properties of these compounds are nowadays well understood [ 1 ]. This is a proper 
consequence of the fact that only the molecular graphs of hydrocarbons are simple 
graphs (i.e. possess no self-loops and weighted edges). 

It is natural to pose the question of the extension of the graph-theoretical approach 
also to heteroconjugated molecules. The present work offers some contributions 
in this direction. However, only the simplest class of such systems is considered, 
namely alternant molecules with one heteroatom. As it will be seen, the graph- 
theoretical analysis of these latter systems is much more complicated than the 
same treatment of alternant hydrocarbons. Analogous consideration of non- 
alternant heteroconjugated systems and molecules with several heteroatoms 
results in rather complex mathematical expressions, which can hardly provide any 
chemically relevant information. 
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Preliminary topological results on alternant molecules with one heteroatom were 
reported in [3]. 

The way in which a heteroconjugated molecule is represented by a graph is 
described in detail elsewhere [3, 4], For example, G~ and Gg are the molecular 
graphs of acridine (I) and diphenylamine (II), respectively. 

The position of the heteroatom is indicated by a self-loop of weight h on the 
corresponding vertex of the molecular graph G hi. If h --* 0, the self-loop in G h 

disappears and thus G o becomes the molecular graph of a conjugated hydro- 
carbon. Consequently, by setting h--0, all expressions which are obtained in the 
present work reduce to formulas valid for alternant hydrocarbons. 

The necessary first step in the application of graphs to the molecular orbital theory 
of conjugated systems is the use of the Sachs theorem [5, 6]. This result, namely, 
relates the HMO secular polynomial with the structure of the molecular graph. 
The paper of Sachs [5] contains the explicit formulation of this theorem for simple 
graphs, together with an immediate (but implicitly given) generalization for graphs 
with self-loops and/or weighted edges. In recent chemical literature the generalized 
Sachs formula was published by various authors [4, 7]. 

In the present paper we offer a topological analysis of the three most important 
n-electron indices of conjugated systems- total zc-electron energy, charge density 
distribution and bond order. For this purpose we need a number of graph- 
theoretical definitions. These are explained ha the subsequent section, together 
with the adopted notation and terminology. 

2. Graph-Theoretical Representation of Alternant Molecules with One Heteroatom 

We shall consider molecular graphs with N vertices. The unique self-loop is 
located on the vertex r. If the weight of this self-loop is h, we shall denote the 
corresponding molecular graph by G h. The adjacency matrix A n and the char- 

t We consider molecular graphs without weighted edges. This is equivalent to the approximation 
flcx =flcc in the H M O  theory. 
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acteristic polynomial P(G h, x) of the graph G h are defined as usual [4, 6, 7] 

I h i fu=v=r 

(Ah)uv = 1 if the vertices u and v are adjacent 

0 otherwise 

P(G h, x)=  det ( x l -  A h) 

If  h = 0, then we denote the molecular graph simply by G. Hence, G contains no 
self-loop and represents the parent hydrocarbon of the heteroconjugated system 

The subgraph G-u is obtained by deletion of the vertex u from G. Thus G-u 
contains N-1 vertices. The subgraph G-uv, which possesses N-2 vertices, is ob- 
tained by deletion of  the vertices u and v from G. The subgraph G-uvz is defined 
analogously. 

In order to write the expressions which follow in a more dense form, we introduce 
the function (G) as 

(G)=i-Np(G, ix) (1) 

where i is the imaginary unit. The polynomial (G-u) is given accordingly by 

(G-u) = i -N+ aP(G-u, ix) (2) 

If  G h is alternant, then evidently G and G-r are altemant too. Because of  the 
pairing theorem, one can write their characteristic polynomials in the form [1] 

P(G, x ) =  ~ ( -  1)Ja~x ar-2j 
J 

P(G-r, x)=  ~ ( -  1)ibjx N- 1-2j 
J 

In the above notation, the coefficients of P(G, x) and P(G-r, x) are written in such 
a manner that aj>>.O and bj>~O. Then (G) and (G-r) are polynomials with real, 
non-negative coefficients, namely 

(G) = ~ajxN-2j; (G-r) = ~b~x N-1-2j 
J J 

(G) is either an even or an odd function, depending on whether N is even or odd. 
The parity of  the function (G-r) is, of course, opposite to that of (G). 

We introduce now an important topological function V r = V,(x) as 

Vr = (G-r)/(G) (3) 

Another function of  this type, Vrs, is defined analogously by 

V~ = (G-rs)/(G) (4-) 
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It is easy to show that Vr(x) has the following behaviour for small and large values 
ofx .  

I Xbk- 1 lag if x -~ 0 and N = 2k 
V , -  (5) 

bk/(Xak) if X ~ 0 and N =  2k + 1 

V,..~l/x i f x ~  ~ (6) 

According to the (generalized) Sachs theorem [-4, 5, 7], it is 

P(G h, x )=P(G,  x ) - h P ( G - r ,  x) 

which combined with Eqs. (1) and (2) gives 

(O h) = (6)  + ih(G-r) (7) 

Further graph-theoretical definitions will be introduced where necessary. 

3. Total n-Electron Energy of Alternant Molecules with One Heteroatom 

In order to simplify the mathematical formulas in this and the following sections, 
the abbreviate notation 

+ ~  

1 
f F(x) d x = - ( F ( x ) } - ( F }  

n - -o9  

will be used for a frequently occurring type of integrals. Then the Coulson formula 
for total n-electron energy differences reads [8, 3] 

E h -  E= h + (ln I(Gh)/(G)[} 

where E h and E are the total n-electron energy of G h and G, respectively. Taking 
into account Eq. (7) and the fact that G h is alternant, one obtains [3] 

E h - E = h  + �89 (1 +h z V~)) (8) 

with V r being defined by Eq. (3). An important conclusion which can be im- 
mediately drawn from Eq. (8) is E h -  E -  h > 0, which is interpreted by the following 
rule [3]. The rule is valid for alternant systems possessing a heteroatom being 
more electronegative than carbon (i.e. h > 0). 

Rule 1. A heteroconjugated molecule is always more stable than its parent hydro- 
carbon. 

Series expansion of the integral in Eq. (8) gives 

E h - E = h + lh2 ( V 2 ) - �88 V~ 4) + - - -  (9) 

showing that the self-polarizability of the site r is 

lr. = ( V z } (10) 

From (9) is seen that E h > E + h + �89 z nrr , provided, of course, that h > 0. 
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Rule 2a. Second order perturbation theory neces~ar W underestimates the value 
of E h. Similarly, third order perturbation theory will overestimate E h, etc. 

A method for approximate evaluation of the integral in Eq. (8) has been developed 
in Refs. [3, 9]. The method is based on the knowledge of the asymptotic behaviour 
of the integrand for x ~ 0 and x ~ oe. Because of the relations (5) and (6) we 
have 

b~_ ?x 2 
for N =  2k V~ ~ (ak +bk- 1 x2) 2 

b 2 + x 2 
V2 "~ (a  2 -I- x 2 ) x  2 for N =  2k + 1 

Substitution of these latter approximations back into Eq. (8) yields after straight- 
forward integration 

E h - E + h + ( h  2 n t- 4ak/bk- a )1 /2  _ (4ak/b k- i ) i / 2  (l l)  

for N = 2 k ,  and 

E h - E  + h  + (h 2 -I- 2[h[b k m , 7 2 ~  1 / 2  _ ,., 
~ k /  ~ k  

for N = 2 k +  1. 

The coefficients a and b in the above approximate formulas have the following 
well known topological interpretation [10]. 

ak = [ASC(G)]Z; bk- 1 = ~ [ A S C ( G - r u ) ]  2 for N = 2 k  
u 

ak= ~ [ A S C ( G - u ) ] 2 ;  b k = [ A S C ( G - r ) ]  2 for N = 2 k +  1 
u 

Here ASC denotes the algebraic structure count of the corresponding molecular 
graph [1, 11]. It is worth mentioning that (4ak/b k_ 1) 1/2 in Eq. (11) is equal to the 
Dewar index D r of the site r of the parent hydrocarbon [10, 12]. Hence, Eq. (11) 
is rewritten as 

E h - E + h  + (h z -1- D2) 1/2 - D  r 

and a general rule follows for molecules with even number of conjugated centers 
(i.e. N =  2k). 

Rule 3. The stability of a heteroconjugated molecule is a decreasing function of the 
Dewar index of the site where the heteroatom is located. Among positional isomers 
with one heteroatom, the most (least) stable one is that with the heteroatom in 
position with minimal (maximal) Dewar index. 



292 I. Gutman 

4. Charge Density Distribution and Bond Orders in Alternant Molecules with One 
Heteroatom 

The introduction of a heteroatom into an alternant conjugated hydrocarbon 
results in non-uniform n-electron charge distribution. Many years ago Coulson 
and Longuet-Higgins [13] noticed the alternation of positive and negative charges 
along a carbon atom chain in heteroconjugated molecules. Little has been done 
thereafter on the elucidation of this remarkable topological phenomenon. 

According to the classical results of Coulson and Longuet-Higgins [14], the 
n-electron charge density on the conjugated center s is given by 

q~ = 1 - (P(ah-s, ix)/P(G h, ix)) 

or in another notation 
h qs - 1 + i((Gh-s)/(Gh)) (12) 

Substitution of the recurrence relations (7) and (13) 

(Gh-s) = (G-s) + ih(G-rs) (13) 

into Eq. (12) yields 

/ ( G-r)( GlS) - ( G)( G-rs) \ . / ( G )( G-s) + hZ(G-r)(GlrS) \ 
qhs=l +h \ ~ / + z \  ~ - 2 ~  / (14) 

In the present work it is assumed that G h is alternant. Therefore both the product~ 
(G)(G-s) and (G-r)(G-rs) are odd functions and the second integral in formula 
(14) vanishes. Thus for alternant systems we get 

h / (G-r) (G-s) - (G)(G-rs) \  
q,= 1 + h \  ~ / (15) 

This topological formula is also written in the form 

, / ( a - r ) ( a - s ) -  (a ) (a - r s ) \  
- q s=n \ -  ( - ~ ~  . /  (16) 

because in alternant hydrocarbons the charge distribution is uniform (i.e. all 
q~= 1). 

From Eq. (15) is seen that the charge density on the site s is almost linearly pro- 
portional to the weight h of the self-loop on the vertex r, but depends also on a 
delicate balance of two very similar topological functions (G-r)(G-s) and (G)(G-rs). 
Therefore the prediction o f  the sign of the n-electron charge on the basis of 
topological arguments seems to be a rather difficult task in the general case. In the 
next section a special situation is discussed, where a considerable simplification of 
Eq. (15) occurs. 

Series expansion of Eq. (15) gives 

q~= 1 + h (  VrV s - Vrs ) - h 3 ( ( V r V s  - Vrs)Vr 2) + " "  (17) 
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from which a topological formula for atom-atom polarizability rc, s is seen to be 

u,s=(V, Vs-V,~) (18) 

The V-functions are given by Eqs. (3) and (4). 

Rule 4. The expressions q h_ 1 and hu,s have equal sign. Hence the sign of  the 
u-electron charges in alternant molecules with one heteroatom is always correctly 
predicted by means of atom-atom polarizability. 

From Eq. (17) it can be also concluded that q~ < 1 + hu~s if huts > 0 and q~ > 1 + hu~ 
if hu,~ <0. Hence, in all cases I 1 - ~ l  < [hu,~]" 

Rule 2b. First order perturbation theory (i.e. the use of atom-atom polariz- 
abilities) overestimates the absolute value of the u-electron charges in alternant 
molecules with one heteroatom. In the same way second-order perturbation 
theory will underestimate ~ etc. 

For  r = s the subgraph G-rs is not defined. It is consistent, however, to set (G-rr) - 0. 
Then Eq. (15) becomes 

(G-r) 2 \ 
r = 1 + h \ ( G )  2 + h2(G_r)2 / 

while (18) reduces to Eq. (10). 

The graph-theoretical expression for bond order in an alternant molecule with one 
heteroatom is derived by a procedure analogous to that used in Ref. [15]. Since it 
requires rather tedious algebraic manipulations, we present here only the final 
formula, valid for adjacent vertices s and t. 

. / (G)(a-st)+h2(a-r)(a-rst) \  P"=\ /+ 
/ (G)(G-Z)  + h2(G-r)(G-r-Z)\ 

+ ~z ( -  1)z/2-* ~ ~ / (19) 

In the above expression Z denotes a cycle of the length z. The summation goes over 
all cycles of  G which contain the bond st. The subgraphs G-Z and G-r-Z are 
obtained by deletion of  Z from G and G-r, respectively [15]. If  Z contains the 
vertex r, then G-r-Z is not defined and it is to be assumed that (G-r-Z) = 0. 
Similarly, it is (G-rst) = 0 if r = s or r = t. 

By setting h = 0 we obtain from Eq. (19) the previously known [15] formula for 
bond order in alternant hydrocarbons. 

\ (o) ( a - z )  / \ 
, \ (G) / 

This enables one to write Eq. (19) in the form 

p h --Ps, = h2/(G-r)  [(G)(G-rst) - (G-r)(G-st)] \ \ /+ 
+ h 2 Z ( _  1)z/2_ , /(_G-r)[(G)(G-r-Z)-(G-r)(G-Z)]\ (201 

z \ (G) [(G) 2 +h2(G-r) 23 / 
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There exists a deep and intriguing analogy between Eqs. (16) and (20). Thus the 
introduction of a heteroatom in a conjugated hydrocarbon causes changes in bond 
orders (and therefore also in bond lengths), which are almost linearly proportional 
to h 2. In the general case, however, it is difficult to predict whether a bond st will be 
lengthened or shortened, because the sign ofp~h~-pst depends on the differences of 
closely related topological expressions (G)(G-rst) and (G-r)(G-st) etc. In the next 
section we shall be able to say more about ph~ --pa for a special class of conjugated 
systems. 

Since the bond order p~t depends on h 2, it is d(p] t)/dh = 0 for h = 0. This is equivalent 
to the well known finding that the bond-atom polarizability 7r .... vanishes for all 
sites r and bonds st in arbitrary alternant hydrocarbons. 

In the case when the bond st does not belong to any cycle (e.g. such are all bonds in 
acyclic molecules), Eqs. (19) and (20) reduce to 

psi=\ / :  
/(G-r) [(G)(G-rst) - (G-r)(G-st)] \ (21) 
\ / 

5. Three Theorems for Charge Distribution and Bond Order 

In the present section we shall study a class of heteroconjugated molecules in 
which the sites is separated from the heteroatom (at position r) by a linear polyene 
chain of n carbon atoms (n = 0, 1, 2 , . . . ) .  Such systems are represented by graphs 
of the form G, h. 

The subgraphs A and B symbolize arbitrary alternant fragments of the molecule. 

It is worth mentioning that the graphs of the type G h were subject of various recent 
theoretical investigations [16, 17]. The graphs G, (these are the graphs G, h for 
h=0)  fulfil the identities [-17, 18] 

(G,) = (A)(B)(P,) + [ (A)(B-s) + (A-r)(B)](P,_ 1) + (A-r)(B-s)(P,_ 2) 

( G . - r )  = (a-r)[(B)(P.) + (B-s)(e._ 1)] 

(22a) 

(22b) 

(G,-s) = (B-s)[(A)(P.) + (A-r)(P,_ t)] (22c) 
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( G.-rs) = ( A-r)( B-s)( P.) (22d) 

(G.-ns) = (B~)  [(A)(P._ 1) + (A-r)(P._ 2)] (22e) 

(G.-rns) = (A-r) (B-s) (P._ 1) (22f) 

where P.  is the path ( =  linear chain) with n vertices. From Eqs. (22) it follows 

(6,-r)(O.-s) - (6,)(G.-rs) = (A-r) 2 (B-s) z [(P,_ 1) 2 - (P,)(P,_ 2)] (23) 

(G.)(G,-rns) - (G.-r)(G,-ns) = (A-r) 2 (B)(B-s) [(P,_ 1) 2 - (P,)(P,_ 2)] (24) 

In the Appendix it is proved that 

(P , -  1) 2 - (P,)(P,- 2) = ( -  1) "+1 (25) 

Combining Eqs. (23) and (25) with Eq. (15), one obtains 

~ = l + ( _ l ) , + l h /  (A-r)Z(B-s) 2 \ 
\ ( G ~ ) 2  / (26) 

The integral on the right side of  Eq. (26) is evidently positive and one deduces the 
following important conclusion, valid for heteroconjugated systems G, h. 

Rule5 (The Charge Alternation Rule). The charge on the atom s is positive 
(negative) if the distance between s and the heteroatom is odd (even). 

In the formulation of  the above theorem it is assumed that the heteroatom is more 
electronegative than carbon (h > 0), For the case of negative h, Rule 5 is to be 
modified accordingly. Of  course, the distance between the atoms r and s is n + 1 in 
our notation. 

For  the bond order of  the bond ns, Eq. (21) applies. Then substitution of  (24) and 
(25) back into (21) gives 

ph, s--p,~=(--1)"+1h 2 / (G"-r)(A-r)Z(B)(B-s) \ (27) 
\ ( G , )  [(G,) 2 + h 2 (G,-r)2]/ 

Rule 6 (The Bond Order Alternation Rule). The introduction of a heteroatom 
decreases (increases) the bond order of  the bonds with an odd (even) distance from 
the heteroatom. 

The above rule is valid for heteroatoms with both positive and negative values ofh. 
The distance of  the bond ns from the heteroatom is n + 1 in our notation. 

From the identity [ 18] ( P . ) =  x(P,_ 1)+ (P,-2) it is seen that the coefficients of  the 
polynomial (P,) rapidly increase with increasing n. From Eqs. (22) it is then evident 
that also (G,) and (G,-r) have a similar dependence on n. Since the expressions 
(A-r)  2 (B-s) 2 and (A-r) z (B)(B-s) are completely independent of  n, the integrals in 
Eqs. (26) and (27) must be rapidly decreasing functions of the length of  the linear 
polyene fragment. Therefore we deduce the following rules. 
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Rule 7a. The  abso lu t e  value  o f  the  n-e lec t ron  charge  r ap id ly  decreases  when  the 
d i s tance  f rom the h e t e r o a t o m  increases.  

Rule 7b. The  effect o f  a h e t e r o a t o m  on bond  o rde r  r ap id ly  decreases  when  the 
d i s tance  o f  the  b o n d  f rom the h e t e r o a t o m  increases.  

A l t h o u g h  the three  rules in this  sect ion are  p roved  only  for  a re la t ive ly  na r row  
class o f  h e t e r o c o n j u g a t e d  molecules ,  we expect  tha t  the range  o f  va l id i ty  o f  these 
resul ts  is much  wider .  

Appendix  

In  o r d e r  to  p r o v e  Eq. (25), we shall  d e m o n s t r a t e  the  va l id i ty  o f  a m o r e  genera l  
s t a t emen t  (28). F o r  an a r b i t r a r y  system G,  con ta in ing  a l inear  po lyene  f r agmen t  o f  
length n, the  fo l lowing  recurrence  re la t ion  ho lds  [17]. 

(a,,) = x(a,,_ 1) + (G,,_ 2) 

T h e r e f r o m  one  gets 

(G.) z - (G.+ 1)(G._ 1) = [x(G._ 1) "~ (Gn- 2)] (Gn) 

- [ x ( G . )  + ( G . _  i ) ]  ( a . _  1) = - E(G. -  0 2 - (G.)(G._ z)3 

This  iden t i ty  shows tha t  the p o l y n o m i a l  (-1)"+ l[(G._ l )2-(G.) (G._  2)] is 
i ndependen t  o f  n and  therefore  

(G._ ,)2 _ (G.)(G._ 2) = ( -  1)" [(G1) 2 - (G2)(Go)].  (28) 

I f  we set G.  = P . ,  we ob ta in  Eq. (25) as a special  case o f  (28), because  o f  

(P2) = x2 + 1, (Pz) =x ,  (Pe) = 1. 
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